143 research outputs found

    The picture of the Bianchi I model via gauge fixing in Loop Quantum Gravity

    Full text link
    The implications of the SU(2) gauge fixing associated with the choice of invariant triads in Loop Quantum Cosmology are discussed for a Bianchi I model. In particular, via the analysis of Dirac brackets, it is outlined how the holonomy-flux algebra coincides with the one of Loop Quantum Gravity if paths are parallel to fiducial vectors only. This way the quantization procedure for the Bianchi I model is performed by applying the techniques developed in Loop Quantum Gravity but restricting the admissible paths. Furthermore, the local character retained by the reduced variables provides a relic diffeomorphisms constraint, whose imposition implies homogeneity on a quantum level. The resulting picture for the fundamental spatial manifold is that of a cubical knot with attached SU(2) irreducible representations. The discretization of geometric operators is outlined and a new perspective for the super-Hamiltonian regularization in Loop Quantum Cosmology is proposed.Comment: 6 page

    Implications of the gauge-fixing in Loop Quantum Cosmology

    Full text link
    The restriction to invariant connections in a Friedmann-Robertson-Walker space-time is discussed via the analysis of the Dirac brackets associated with the corresponding gauge fixing. This analysis allows us to establish the proper correspondence between reduced and un-reduced variables. In this respect, it is outlined how the holonomy-flux algebra coincides with the one of Loop Quantum Gravity if edges are parallel to simplicial vectors and the quantization of the model is performed via standard techniques by restricting admissible paths. Within this scheme, the discretization of the area spectrum is emphasized. Then, the role of the diffeomorphisms generator in reduced phase-space is investigated and it is clarified how it implements homogeneity on quantum states, which are defined over cubical knots. Finally, the perspectives for a consistent dynamical treatment are discussed.Comment: 7 pages, accepted for publication in Physical Review

    A theoretical framework for network monitoring exploiting segment routing counters

    Get PDF
    Self-driving networks represent the next step of network management techniques in the close future. A fundamental point for such an evolution is the use of Machine Learning based solutions to extract information from data coming from network devices during their activity. In this work we focus on a new type of data, available thanks to the definition of the novel SRv6 paradigm, referred to as SRv6 Traffic Counters (SRTCs). SRTCs provide aggregated measurements related to forwarding operations performed by SRv6 routers. In this work a detailed description of different SRTCs types (SR.INT, PISD, PSID.TM and POL) is provided and their relationships is formalized. The theoretical framework deployed is used to identify, on the basis of network configuration parameters of both SRv6 and IGP protocols, the minimum set of independent SRTCs to characterize the Network Status: we show that about the 80% of counters can be neglected with no information loss. We also apply our framework to two use cases: i) Traffic Matrix (TM) Assessment and ii) Traffic Anomaly Detection. For the TM assessment, we show that in a partially deployed SRv6 scenario a specific type of SRTCs, i.e., PSID, is more reliable than other ones; on the contrary, in a fully deployed scenario POL and PSID.TM counters provide the full TM knowledge. For the Traffic Anomaly Detection case, we show that known solutions based on link load measurements can be improved when integrating SRTCs information

    More than range exposure: global otters’ vulnerability to climate change

    Get PDF
    Climate change impact on species is commonly assessed by predicting species’ range change, a measure of a species’ extrinsic exposure. However, this is only one dimension of species’ vulnerability to climate change. Spatial arrangement of suitable habitats (e.g., fragmentation), their degree of protection or human disturbance, as well as species’ intrinsic sensitivity, such as climatic tolerances, are often neglected. Here, we consider components of species’ intrinsic sensitivity to climate change (climatic niche specialization and marginality) together with components of extrinsic exposure (changes in range extent, fragmentation, coverage of protected areas, and human footprint) to develop an integrated vulnerability index to climate change for world’s freshwater otters. As top freshwater predators, otters are among the most vulnerable mammals, with most species being threatened by habitat loss and degradation. All dimensions of climate change exposure were based on present and future predictions of species distributions. Annual mean temperature, mean diurnal temperature range, mean temperature of the wettest quarter, precipitation during the wettest quarter, and precipitation seasonality prove the most important variables for otters. All species are vulnerable to climate change, with global vulnerability index ranging from -0,19 for Lontra longicaudis to -36,9 for Aonyx congicus. However, we found that, for a given species, climate change can have both positive and negative effects on different components of extrinsic exposure, and that measures of species’ sensitivity are not necessarily congruent with measures of exposure. For instance, the range of all African species would be negatively affected by climate change, but their different sensitivity offers a more (Hydrictis maculicollis, Aonyx capensis) or less (Aonyx congicus) pessimistic perspective on their ability to cope with climate change. Also, highly sensitive species like the South-American Pteronura brasiliensis, Lontra provocax, and Lutra perspicillata might face no exposure to climate change. For the Asian Lutra sumatrana, climate change would instead lead to an increased, less fragmented, and more protected range extent, but the range extent would also be shifted into areas with higher human disturbances. Our study represents a balanced example of how to develop an index aimed at comparatively evaluating vulnerability to climate change of different species by combining different aspects of sensitivity and exposure, providing additional information on which to base more efficient conservation strategies

    Dirac equations in curved space-time versus Papapetrou spinning particles

    Full text link
    We find out classical particles, starting from Dirac quantum fields on a curved space-time, by an eikonal approximation and a localization hypothesis for amplitudes. We recover the results by Mathisson-Papapetrou, hence establishing a fundamental correspondence between the coupling of classical and quantum spinning particles with the gravitational field.Comment: 6 pages, 1 figure, accepted for publication in Europhysics Letter

    SOA-Based Optical Packet Switching Architectures

    Get PDF
    The service evolution and the rapid increase in traffic levels fuel the interest toward switching paradigms enabling the fast allocation of Wavelength Division Multiplexing WDM channels in an on demand fashion with fine granularities (microsecond scales). For this reason, in the last years, different optical switching paradigms have been proposed: optical-packet switching (OPS), optical-burst switching (OBS), wavelength-routed OBS, etc. Among the various all-optical switching paradigms, OPS attracts increasing attention. Owing to the high switching rate, Semiconductor Optical Amplifier (SOA) is a key technology to realize Optical Packet Switches. We propose some Optical Packet Switch (OPS) architectures and illustrate their realization in SOA technology. The effectiveness of the technology in reducing the power consumption is also analyzed. The chapter is organized in three sections. The main blocks (Switching Fabric, Wavelength Conversion stage, Synchronization stage) of an OPS are illustrated in Section 2 where we also show some examples of realizing wavelength converters and synchronizers in SOA technology. Section 3 introduces SOA-based single-stage and multi-stage switching fabrics. Finally the SOA-based OPS power consumption is investigated in Section 4

    Dynamic in-network classification for service function chaining ready SDN networks

    Get PDF
    Service Function Chaining (SFC) paradigm consists in steering traffic flows through an ordered set of Service Functions (SFs) so that to realize complex end to end services. SFC architecture introduces all the logical functions that need to be developed in order to provide the required service. The SFC overlay infrastructure can be built on top of many different underlay network technologies. The high flexibility and centrally controlled feature of Software Defined Networking (SDN), make SDN networks to be a perfect underlay to build the SFC architecture. Due to Ternary Content Address Memory (TCAM) limited size, SDN switches have a limitation in the number of flow rules that can be hosted. This constraint is particularly penalizing in case of the SFC classifier function, since it requires to manage a high number of different flows. The limitation imposed by the TCAM size on the SFC classifier can be a bottleneck for the number of SFC requests that the SDN-based SFC architecture can handle. In this paper we define the Dynamic Chain Request Classification Offloading (D-CRCO) problem, as the one of maximizing the number of accepted SFC requests, having the possibility of: i) implement the SFC classifier also in a node that is internal to the SDN-based SFC domain, and ii) install classification rules in a reactive fashion. Furthermore, we propose the Dynamic Nearest Node (DNN) heuristic to solve the D-CRCO problem. Performance evaluation shows that by using DNN heuristic it is possible to triple the number of accepted requests, with respect to existing solutions

    Spatial modelling of soil water holding capacity improves models of plant distributions in mountain landscapes

    Get PDF
    Aims The aims of this study were: 1) to test a new methodology to overcome the issue of the predictive capacity of soil water availability in geographic space due to measurement scarcity, 2) to model and generalize soil water availability spatially to a whole region, and 3) to test its predictive capacity in plant SDMs. Methods First, we modelled the measured Soil Water Holding Capacity (SWHC at different pFs) of 24 soils in a focal research area, using a weighted ensemble of small bivariate models (ESM). We then used these models to predict 256 locations of a larger region and used the differences in these pF predictions to calculate three different indices of soil water availability for plants (SWAP. These SWAP variables were added one by one to a set of conventional topo-climatic predictors to model 104 plant species distributions. Results We showed that adding SWAP to the SDMs could improve our ability to predict plant species distributions, and more specifically, pF1.8–pF4.2 became the third most important predictor across all plant models. Conclusions Soil water availability can contribute a significant increase in the predictive power of plant distribution models, by identifying important additional abiotic information to describe plant ecological niches

    Generalizing soil properties in geographic space: Approaches used and ways forward.

    Get PDF
    Soil is one of the most complex systems on Earth, functioning at the interface between the lithosphere, biosphere, hydrosphere, and atmosphere and generating a multitude of functions. Moreover, soil constitutes the belowground environment from which plants capture water and nutrients. Despite their great importance, soil properties are often not sufficiently considered in other disciplines, especially in spatial studies of plant distributions. Most soil properties are available as point data and, to be used in spatial analyses, need to be generalised over entire regions (i.e. digital soil mapping). Three categories of statistical approaches can be used for such purpose: geostatistical approaches (GSA), predictive-statistical approaches (PSA), and hybrid approaches (HA) that combine the two previous ones. How then to choose the best approach in a given soil study context? Does it depend on the soil properties to be spatialized, the study area's characteristics, and/or the availability of soil data? The main aims of this study was to review the use of these three approaches to derive maps of soil properties in relation to the soil parameters, the study area characteristics, and the number of soil samples. We evidenced that the approaches that tend to show the best performance for spatializing soil properties were not necessarily the ones most used in practice. Although PSA was the most widely used, it tended to be outperformed by HA in many cases, but the latter was far less used. However, as the study settings were not always properly described and not all situations were represented in the set of papers analysed, more comparative studies would be needed across a wider range of regions, soil properties, and spatial scales to provide robust conclusions on the best spatialization methods in a specific context

    Dimensional Reduction of the 5D Kaluza-Klein Geodesic Deviation Equation

    Full text link
    In the work of Kerner et al. (2001) the problem of the geodesic deviation in a 5D Kaluza Klein background is faced. The 4D space-time projection of the resulting equation coincides with the usual geodesic deviation equation in the presence of the Lorenz force, provided that the fifth component of the deviation vector satisfies an extra constraint which takes into account the q/mq/m conservation along the path. The analysis was performed setting as a constant the scalar field which appears in Kaluza-Klein model. Here we focus on the extension of such a work to the model where the presence of the scalar field is considered. Our result coincides with that of Kerner et al. when the minimal case ϕ=1\phi=1 is considered, while it shows some departures in the general case. The novelty due to the presence of ϕ\phi is that the variation of the q/mq/m between the two geodesic lines is not conserved during the motion; an exact law for such a behaviour has been derived.Comment: 9 page
    corecore